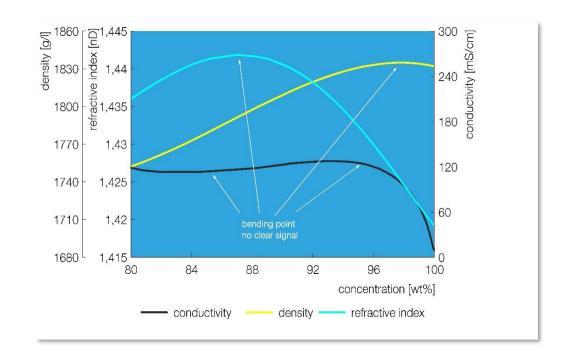


LiquiSonic® - Digital on-line measurement towards process excellence

SensoTech

Our aim: The best technology for your measuring task

- · headquarters in Magdeburg-Barleben, Germany
- subsidiaries in USA and China
- · international team of sales representatives
- · worldwide customer relationships
- · 30 years experience in inline analytical technology
- quality management with certification of DIN EN ISO 9001
- · support and trainings



Monitoring of sulfuric acid concentration

Which measurement technique do you use?

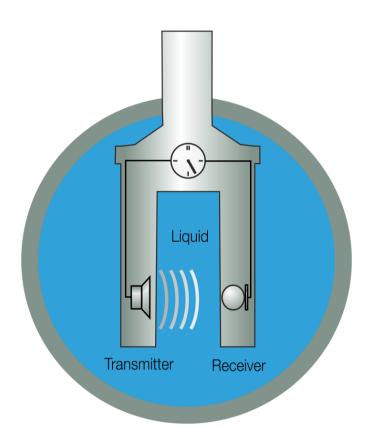
- · conductivity?
- · density?
- refractive index ?
- → All these measurement techniques are limited (80 100 wt% H₂SO₄)
- → Still taking samples and waiting for lab results?
- → What did you know about sonic velocity?

Properties

- · mechanical vibration beyond the audible range (> 20 kHz)
- · measuring technique: frequency > 1 MHz
- · sonic velocity as propagation velocity of sonic waves
- sonic velocity as characteristic property of liquids, comparable with specific density, conductivity or refractive index

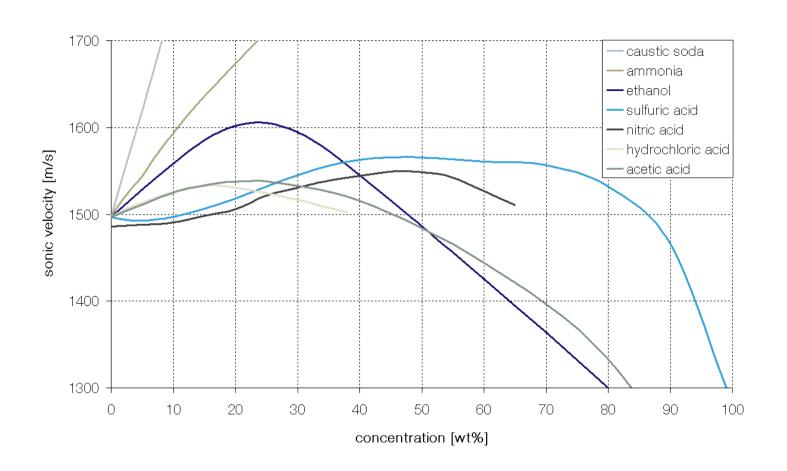
Medium	Sonic velocity	Example	
gas	250 to 400	00 air: 330 m/s	
liquid	700 to 2,500	water: 1,500 m/s	
solid	4,500 to 6,000	steel: 4,650 m/s	

Measuring method


 measurement of the propagation velocity of ultrasonic waves in a liquid:

$$v = \frac{s}{t}$$

v: sonic velocity


s: distance

t: travel time

Sonic velocity and concentration

In liquids, we set the measure www.sensotech.com

Coefficient of concentration and temperature

accuracy of the device:

· sonic velocity: ± 0.05 m/s

· temperature: ± 0.05 °C

→ In majority of applications the device achieves an accuracy of ± 0.05 wt%.

Liquid	Working point	Coefficient of concentration	Coefficient of temperature
propanol	60 %, 20 °C	-3.8 ms-1/m%	-3.0 ms-1/°C
propanol	90 %, 20 °C	-4.3 ms-1/m%	-3.1 ms-1/°C
propanol	60 %, 80 °C	-5.7 ms-1/m%	-3.1 ms-1/°C
propanol	90 %, 80 °C	-5.1 ms-1/m%	-3.3 ms-1/°C
ethanol	80 %, 60 °C	-6.4 ms-1 m%	-3.5 ms-1/°C
acetic acid	80 %, 30 °C	-4.4 ms-1/m%	-3.5 ms-1/°C
sulfuric acid	80 %, 30 °C	-12 ms-1/m%	-3.0 ms-1/°C
caustic soda	10 %, 20 °C	20.8 ms-1/m%	3.0 ms-1/°C
glucose	10 %, 30 °C	4.2 ms-1/m%	2.0 ms-1/°C
beer	11 %, 2 °C	5.0 ms-1/m%	2.5 ms-1/°C

Application fields of LiquiSonic®

Your industry, your applications

Concentration measurement (binary or tertiary mixture)

· concentration of inorganic / organic liquids, emulsion und suspension

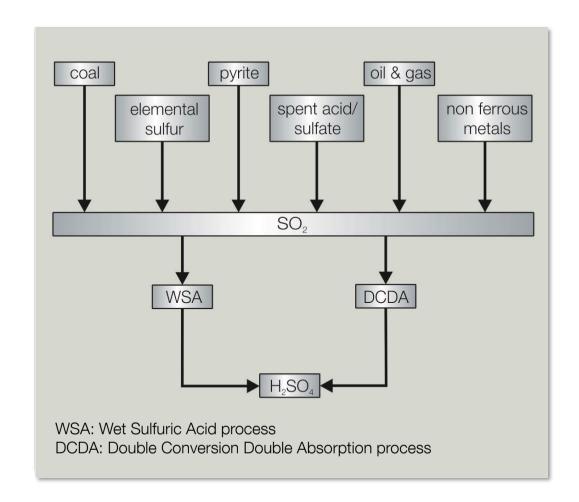
Phase separation

- · phase interface detection in pipes and vessels
- phase position in vessels
- · inspection of incoming goods

Polymerization

- · concentration of monomers
- · monitoring of a polymerization process
- · content of remaining monomer and concentration of polymer

Crystallization

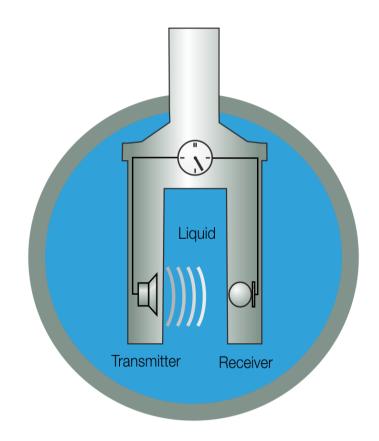

- · determination of saturation and crystallization temperature
- · determination of supersaturation
- · determination of growth kinetics

In liquids, we set the measure www.sensotech.com

Different raw materials - different industries

- diverse raw materials
- materials are typical for certain industrial manufacturing processes
- · sulfuric acid production is typically coupled to:
 - · crude oil refinery
 - · metal industry
 - · petrochemical industry
 - · fertilizer production
 - · coal mining
 - · viscose production

Double contact double absorption process (DCDA)

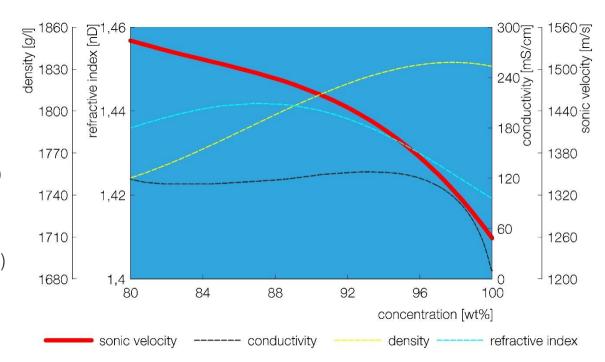

- sulfuric acid production (H₂SO₄) based on sulfur burning (S)
- production process requires an exact determination of H₂SO₄ strength between 90 wt% and 100 wt%
- detection of the oleum strength (> 100 wt%), avoiding safe-critical process situations such as acid runaways and emissions
- sensor installation:
 - · drying tower
 - · oleum absorption tower
 - · intermediate absorption tower
 - · final absorption tower
 - dilution of sulfuric acid / oleum to the preferred target concentration

Customer benefits: sonic velocity - inline

- · easy installation: plug 'n play
- · maintenance-free and excellent long term-stability
- · improved process control
 - precise H₂SO₄ strength ± 0.05 wt%
 - · corrosion protection
- · no unclear laboratory values anymore
 - unexpected laboratory values → repetition (titration)
 → additional personnel and material costs
 - Until clear result: operator has to adjust process parameters → e.g. increase concentration → costs
 - · in case of titration error: too low concentration (increased corrosion rate)
- · inline measurement 24/7 real-time data
- · corrosion-resistant sensor material
 - · Hastelloy C2000, Hastelloy BC1 Hybrid
 - · Tantalum
 - · PFA coating

Customer benefits: sonic velocity - inline

- · improved process control
- · LiquiSonic® replaces laboratory costs:
 - · No titration anymore (common laboratory method)
 - · sampling time: 15 minutes
 - · sampling frequency: 6 times per day
 - · labor costs per day: 75€/d (96,6\$/d)
 - · costs per year (230 working days):
 - \cdot 230d x 75€/d = 17.250€/y (23,800\$/y)
 - · amortization < 1 year
- one sensor for all applications (reduced costs for spare parts)
- · comprehensive diagnostic capabilities
- · powerful data storage



Which measurement technique are you going to use in the future?

Sonic velocity!

- outstanding accuracy of ± 0.05 wt%
- no bending point
- increased plant safety
 - · acid runaway can be detected (concentration drop)
 - · no too low concentration = no corrosion
- unmatched lifespan → 15 years
- corrosion-resistant (Hastelloy C2000, BC1-Hybrid)
- maintenance-free
- no drift

Comparison of analyzers for H₂SO₄ and Oleum

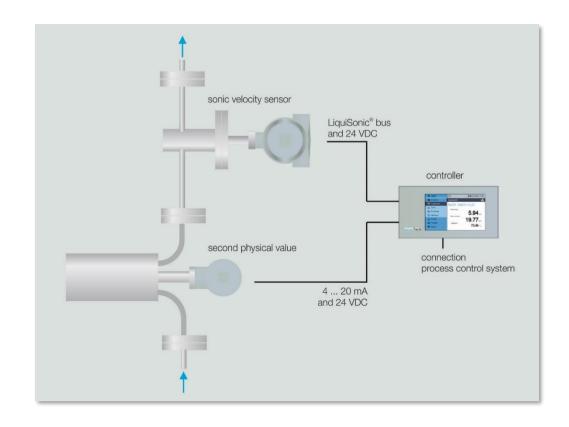
- sonic velocity inline: the only measurement system with high accuracy level for all ranges
- conductivity: inflection point between 80 95 wt%
- density: inflection point between 95 99.99 wt%

concentration range technology	80 - 95 % H2SO4	95 - 99.99 % H ₂ SO ₄	20 - 30 % Oleum	65 % Oleum
SensoTech sonic velocity inline				
conductivity	(P)	(S)		
density		P		(S)

In liquids, we set the measure www.sensotech.com

LiquiSonic® – your powerful H₂SO₄ analyzer

- LiquiSonic® Controller 30 V10
 - · Profibus DP
 - · MODBUS RTU
 - MODBUS TCP
 - · analog outputs: 4 x 4-20 mA
 - · digital outputs: 6x electronical relays
 - · operation via touch display or browser
 - · manages up to 4 sensors
- LiquiSonic® immersion sensor 40-14
 - · length: customized
 - · max. temperature: 120 °C (optional 200 °C)
 - · process connection: DIN, ANSI
- · LiquiSonic® sensor materials
 - · hastelloy C2000
 - · hastelloy Hybrid-BC-1
 - · tantalum
 - PFA coating

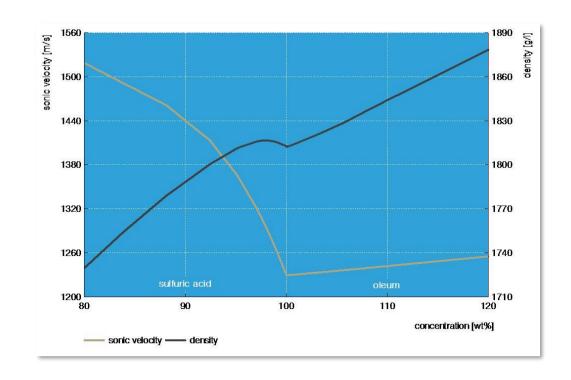

Combination measurement for 3-component-analysis

Basic

 combination of sonic velocity with different physical values like density, conductivity or refractive index

Examples of applications

- · sonic velocity and density
 - · methanol and formaldehyde in water
 - ethanol and acetic acid in water
 - · sulfuric acid and oleum
- · sonic velocity and conductivity
 - · caustic soda and sodium chloride in water
 - · hydrochloric acid and Iron in water
 - · caustic soda and propanol in water
- · sonic velocity and refractive index
 - · dextrose equivalent of carbohydrate



LiquiSonic® - one system for two applications

- Two applications at one installation point
 - · 90 100 wt% H₂SO₄
 - · 0 20 wt% free SO₃ (oleum strength)
- · LiquiSonic® 40 solve this applications
 - · sonic velocity and density in combination
 - · long-time stability and maintenance-free system
- · Sulfuric acid in 3-component applications
 - · H₂SO₄ / H₃PO₄ in H₂O (mixed acid)
 - · H₂SO₄ / HCl in H₂O (mixed acid)
 - · H₂SO₄ / HF in H₂O (semiconductor etching)
 - · H₂SO₄ / H₂CrO₄ in H₂O (chrome bath)
 - · H₂SO₄ / Fe₂SO₄ in H₂O (iron pickling bath)
 - · H₂SO₄ / Al₂(SO₄) in H₂O (aluminium pickling bath)
 - · And many more

Contact SensoTech to solve your H₂SO₄ application!

References

We are committed to quality in every way.

In liquids, we set the measure.

SensoTech GmbH Germany

T +49 39203 514 100 info@sensotech.com www.sensotech.com

SensoTech Inc.

T +1 973 832 4575 sales-usa@sensotech.com www.sensotech.com SensoTech (Shanghai) Co., Ltd. 申铄科技(上海)有限公司

电话 +86 21 6485 5861 sales-china@sensotech.com www.sensotechchina.com